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Abstract
Mathematical programming can be used to optimize. The typical mathematical notation for optimization is:     subject to   for linear programming (LP) [footnoteRef:1]  or  subject to  for non-linear programming (NLP).  We can create similar expressions using standard APL syntax. [1:  In mathematics a vector is represented as an nx1 matrix.  The notation  in mathematics mean the transpose of the column vector c which results in a 1xn row vector  .  In APL, this is not necessary because inner product handles vectors and matrices in a more natural way. ] 

We propose the following syntax for linear programming (LP) :
[bookmark: _Hlk48818730][bookmark: _Hlk482282600]             NS ← ⌊ optimize C x subjectTo A x ≥ B   ⍝ Expression 1
[bookmark: _Hlk46257289]           NS ← ⌈ optimize C x subjectTo A x ≤ B    ⍝ Expression 2
We propose the following syntax for non-linear programming (NLP)
[bookmark: _Hlk48818850]           NS ←  ⌊ optimize f x subjectTo g x ≥ 0     ⍝ Expression 3
           NS ←  ⌈ optimize f x subjectTo g x ≤ 0     ⍝ Expression 4
Parsing Expressions 2 and 3 above, we arrive at the following:
[bookmark: _Hlk482283363][bookmark: _Hlk482283065][bookmark: _Hlk46260824]       NS ←   (⌈ optimize) (C x subjectTo) (A x ≤)     B      ⍝ LP
     NS ←   (⌊ optimize) (f x subjectTo) (g x ≥)     0      ⍝ NLP
  --------  -----------  --------------  ------- ---------  -----
     ↑        ↑             ↑            ↑          ↑
   Result     Runs the     builds a    creates a   right
 Namespace    LP/NLP       tableau     namespace   arg

We need to apply some sleight-of-hand to make the syntax work.  Since x represents a vector of decision variables, it is unknown at the beginning of the optimization process.  So, we don’t need to assign any values to it.  As the middle item in a function expression, x must be either a function in a 3-train (fork), or a dyadic operator.  If x is the middle item in a fork, we would be required to keep the parentheses; and parsing would be difficult.  If we make x a dyadic operator, binding rules eliminate the parenthesis and preserve the arguments.  Let’s look first at the syntax of the rightmost function expression:     
[bookmark: _Hlk46262704]             NS           ←  (  A        x        ≤   )      b        ⍝ LP 
         NS        ←  ( G        x        ≥   )      0        ⍝ NLP 
[bookmark: _Hlk46392937]         ↑              ↑        ↑        ↑          ↑
        Result         Left    operator right      right
       Namespace      operand           operand    argument
 
Note that the left operand is the array A in the LP case, and the function-array G in the NLP case. The function derived from this takes a vector right argument b representing the right-hand-sides of the constraint inequalities, or the scalar 0 in the NLP case. The result of this derived function is a namespace containing the following items:  
	LP:  Linear Program
	NLP: Non-Linear Program

	NS.A:   matrix of constraint coefficients
	NS.G     function array 

	NS.b:    vector of right hand sides
	NS.b      0

	NS.rel:   relation function 
	NS.rel:   relation function


The middle function expression takes this namespace NS as a right argument, and builds a tableau from the feasible region defined by the variables A and b and the function rel in the namespace.  (For NLP, the feasible region is defined by the function G.)     
       NS ← ( c        x       subjectTo )    NS           ⍝ LP 
       NS ← ( f        x       subjectTo )    NS           ⍝ NLP 
  -------    --     --------  ----------     ---------
       ↑      ↑        ↑            ↑          ↑
 Updated     Left    operator     right      Parameter
 Namespace  operand             operand     Namespace
Notice we are using the same operator x as in the rightmost function expression.  But this function expression takes a namespace as its right argument, whereas previously the right argument was a simple numeric vector (or scalar). The operator x can check the name class of its right argument to determine how to proceed.  
        NS ←  ( ⌈      optimize )   NS
        NS ←  ( ⌊      optimize )   NS
       ---    ----     --------    --- 
        ↑       ↑         ↑         ↑
    Solution   Left     operator   right
    Namespace  operand             argument

We now apply the operator optimize function to the namespace created by applying the x operator twice.  The left operand ⌊ or ⌈ determines whether to minimize or maximize the objective.   The result is the updated operator which now contains the following variables:
[bookmark: _Hlk46740282]NS.Decision     ⍝ Optimal value of Decision Variables (Vector)
NS.Objective    ⍝ Value of objective function (Scalar)
NS.ShadowPrice  ⍝ Increase/Decrease in objective function (vector)
NS.ReducedCost  ⍝ Profit contribution minus resource use (vector)
Example 1:  Blue Ridge Hot Tubs 
A manufacturer produces three types of hot tubs:  
	Hot Tub Brand:
	Aqua-Spa
	Hydro-Luxe
	Typhoon-Lagoon
	Resources
Available

	Unit Profit:
	$350
	$300
	$320
	

	Pumps Required
	1
	1
	1
	200

	Labor Required
	9 hours
	6 hours
	8 hours
	1566

	Tubing Needed
	12 feet
	16 feet
	13 feet
	2880



We formulate the problem as follows:

 Number of Aqua-Spas to produce
 Number of Hydro-Luxes to produce
 Number of Typhoon-Lagoons to produce

Maximize 
Subject to: 



Using matrix notation, we can define the problem mathematically as follows:



                      Maximize  subject to 


We can now do the same thing in APL and obtain a solution: 

      C←350 300 320                        ⍝ Objective coefficients
      ⎕← A←3 3⍴1 1 1 9 6 8 12 16 13        ⍝ Constraint coefficients 
 1  1  1
 9  6  8
12 16 13 
      B←200 1566 2880                      ⍝ Resource limitations
      NS←⌈ optimize C x subjectTo A x ≤ B  ⍝ Perform the LP 
      NS.Decision     ⍝ Produce 122 Aqua Spas and 78 Hydro-Luxes 
122 78 0                                  
      NS.Objective    ⍝ Total profit $66,100
66100
      NS.ShadowPrice  ⍝ Each add’l pump contributes $200 to profit 
200 16.66666667 0     ⍝ Each add’l labor hour contributes $16.67 profit
      NS.ReducedCost  ⍝ Each Typhoon-Lagoon produced reduces profit by $13.33
0 0 ¯13.33333333
Example 2:  Weedwacker Company – Make or Buy 
The company produces two types of law trimmers; an electric and a gas model.   The table below indicates the requirements and production capability: 
	
	Electric Trimmers
	Gas Trimmers
	Total Hours Available

	Production
	0.20 hours
	0.40 hours
	10,000

	Assembly
	0.30 hours
	0.50 hours
	15,000

	Packaging
	0.10 hours
	0.10 hours
	5,000

	Cost to Make
	$55
	$85
	

	Cost to Buy
	$67
	$95
	

	Number required
	15,000
	30,000
	


We formulate this problem as follows:
      M1= number of electric trimmers to make   M2= number of gas trimmers to make
		B1= number of electric trimmers to buy     B2= number of gas trimmers to buy

		Minimize  55M1 + 85 M2 + 67 B1 + 95 B2
		ST	M1 + B1 = 30,000
		M2 + B2 = 15,000
		0.20M1 +  0.40M2  10,000
		0.30M1 +  0.50M2  15,000
		0.10M1 +  0.10M2  5,000
		Mi, Bi  0
We solve this problem in Dyalog APL as follows:

     C←55 85 67 95                  ⍝ Objective coefficients
       ⎕←A←5 4⍴1 0 1 0 0 1 0 1 .2 .4 0 0 .3 .5 0 0 .1 .1 0 0
1   0   1 0
0   1   0 1
0.2 0.4 0 0
0.3 0.5 0 0
0.1 0.1 0 0 
     B←30000 15000 10000 15000 5000 ⍝ Resource constraints 
     rel←=,=,≤,≤,≤                  ⍝ Relations (function-train)
     NS←minimize C x subjectTo A x rel B 
     NS.Decision
30000 10000 0 5000  ⍝ Make 30K electric and 10K gas trimmers; buy 5K gas 
     NS.Objective   ⍝ Total cost $2,975,000
2975000
     NS.ShadowPrice ⍝ Each addt’l production hour reduces cost by $25.00
60 95 ¯25 0 0      
       NS.ReducedCost ⍝ Increased cost to buy one more Electric Trimmer $7.00. 
0 0 7 0
Cover Functions
For mathematical programming purists, one may want to define the functions maximize and minimize as follows:
maximize ← ⌈ optimize
minimize ← ⌊ optimize

That way one could enter the following APL expression which mirrors the standard mathematical expression:
      NS ← maximize c x subjectTo A x ≤ b  
The functions lp, ip, tp and nlp were designed to encapsulate the objectives and constraints in a namespace and update it with the values of the decision variables as well as other items such as shadow prices and reduced costs.  The syntax is very simple:
        NS ← lp NS          ⍝ Linear program
        NS ← ip NS          ⍝ Integer program
        NS ← tp NS          ⍝ Transportation problem                      |
Example 3:  Garden City Beach – How Many Lifeguards?
Each summer, the city hires lifeguards to assign five consecutive days each week followed by two days off.  The city’s insurance company requires the minimum number of lifeguards each day:
	Day
	Sunday
Day 0
	Monday
Day 1
	Tuesday
Day 2
	Wednesday
Day 3
	Thursday
Day 4
	Friday
Day 5
	Saturday
Day 6

	Lifeguards
Required
	18
	17
	16
	16
	16
	14
	19


 
The city would like to determine the minimum number of lifeguards that will have to be hired. Let 
Let  Number of workers who start on the following Day:  i.e. Day 7|i+1
For example  Number of workers who start on Tuesday (Day 2)
We formulate the problem thus:    
MIN 	X0 +X1 + X2 + X3 + X4 + X5 + X6  
[bookmark: _Hlk49353839]		ST	X1 +X2 + X3 + X4 + X5  18
			X2 + X3 + X4 + X5 + X6  17
[bookmark: _Hlk49354310]X0 + X3 +X4 + X5 + X6  16
X0 +X1 + X4 + X5 + X6  16
X0 +X1 + X2 + X5 + X6  16
X0 +X1 + X2 + X3 + X6  14
X0 +X1 + X2 + X3 + X4  19
Xi  0 

 We can create a namespace to contain all the components:
       EX3←⎕ns ''                     ⍝ Create namespace
      ⎕←EX3.A←(-⍳7)⌽⍤0 1⊢1 5 1/0 1 0
0 1 1 1 1 1 0
0 0 1 1 1 1 1
1 0 0 1 1 1 1
1 1 0 0 1 1 1
1 1 1 0 0 1 1
1 1 1 1 0 0 1
1 1 1 1 1 0 0
      EX3.B←18 17 16 16 16 14 19  ⍝ Constraint right hand side  
      ⎕←EX3.C←7/1                 ⍝ Objective coefficients
1 1 1 1 1 1 1    
      EX3.optimum←⌊               ⍝ Objective is minimum required lifeguards
      EX3.rel←≥,≥,≥,≥,≥,≥,≥       ⍝ Constraints are greater than or equal
      EX3←LP EX3                  ⍝ Perform the linear optimization 
     EX3.Decision                 ⍝ Lifeguards required from each “shift”
4.6 1.6 5.6 1.6 5.6 3.6 0.6
     EX3.Objective                ⍝ Minimum required lifeguards
23.2 
  
The problem is that we get a fractional solution, whereas we only hire full-time lifeguards.  We could round up the number of workers but that would not be optimal:
     ⌈EX3.Decision                ⍝ Round up each shift
5 2 6 2 6 4 1
     +/⌈EX3.Decision              ⍝ Total number of lifeguards
26      
We really want an integer solution.  To accomplish this, we use integer programming by including the following constraint:
Xi  0 & integer
      EX3←ip EX3                  ⍝ Run integer program
      EX3.Decision                ⍝ Lifeguards required for each shift
3 3 5 0 8 2 3            
      EX3.Objective               ⍝ Total number of lifeguards needed.
24
Example 4:  Transportation Problem – Bonner Electronics
Bonner Electronics is planning to ship product from its Manufacturing plants in Minneapolis, Pittsburgh and Tucson to four warehouses in Atlanta, Boston, Chicago and Denver.  The following table shows the unit shipping cost between each plant and warehouse:
	
	Warehouse
	

	Plant
	Atlanta
	Boston
	Chicago
	Denver
	Supply

	Minneapolis
	$0.60
	$0.56
	$0.22
	$.40
	9.000

	Pittsburgh
	 0.36
	 0.30
	 0.28
	 0.58
	12.000

	Tucson
	 0.65
	 0.68
	 0.55
	 0.42
	13,000

	Demand
	7,500
	8,500
	9.500
	8,000
	


How many units must be shipped from each plant to each warehouse?  There are three Supply nodes and 4 demand nodes; each of these represents a constraint.  The decision variables are represented by arcs connecting each supply node to each demand node.  We could set this up as a traditional LP, but it is easier to treat this as a specialized network problem known as the transportation problem.       
     Supply←9000 12000 13000
     Demand←7500 8500 9500 8000
     ⎕←UnitCost←3 4⍴0.6 0.56 0.22 0.4 0.36 0.3 .28 .58 0.65 0.68 0.55 0.42
0.6  0.56 0.22 0.4 
0.36 0.3  0.28 0.58
0.65 0.68 0.55 0.42
  
     (UnitCost,Supply)⍪Demand,0            ⍝ Assemble matrix
   0.6     0.56    0.22    0.4   9000
   0.36    0.3     0.28    0.58 12000
   0.65    0.68    0.55    0.42 13000
7500    8500    9500    8000        0  
   EX4←TP (UnitCost,Supply)⍪Demand,0      ⍝ Transportation Problem
   EX4.Decision      ⍝ Solution e.g. ship 4000 units from Tucson to Atlanta
   0    0 9000    0
3500 8500    0    0
4000    0  500 8000

      EX4.Objective                        ⍝ Minimum total cost $12,025
12025
Conclusion
Various types of linear programming problems can be solved using APL operators.  The functions are located in a workspace called ALPS (A Linear Programming System).  References for each example are listed below. The non-linear portion is not yet available as it is still under design and development.  
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